Oh and I typically get 16-20 tok/s running a 32b model on Ollama using Open WebUI. Also I have experienced issues with 4-bit quantization for the K/V cache on some models myself so just FYI
Oh and I typically get 16-20 tok/s running a 32b model on Ollama using Open WebUI. Also I have experienced issues with 4-bit quantization for the K/V cache on some models myself so just FYI
It really depends on how you quantize the model and the K/V cache as well. This is a useful calculator. https://smcleod.net/vram-estimator/ I can comfortably fit most 32b models quantized to 4-bit (usually KVM or IQ4XS) on my 3090’s 24 GB of VRAM with a reasonable context size. If you’re going to be needing a much larger context window to input large documents etc then you’d need to go smaller with the model size (14b, 27b etc) or get a multi GPU set up or something with unified memory and a lot of ram (like the Mac Minis others are mentioning).
It would be more interesting to see this with a cost of living figure for each state as well.
Seeing stuff like this in the uplifting news community instead of shit like ‘local kid spends 60 hours a week selling lemonade to pay for sister’s cancer treatments’ is why I appreciate Lemmy vs Reddit.
Looks like it now has Docling Content Extraction Support for RAG. Has anyone used Docling much?